In class work 1

1. Use the rule given by $f(L) = 7L + \frac{48}{L}$ to find each of the following:

(a) $f(4)$	(h) $f(\pi^2)$
(b) $f(5)$	(i) $f(x^2)$
(c) $f(x)$	(j) $f(4\pi)$
(d) $f(\sqrt{2})$	(k) $f(4y)$
(e) $f(3 + \sqrt{2})$ (f) $f(2 + b)$	(1) $f(6)$
(f) $f(3+h)$ (g) $f(x+h)$	(n) $f(\frac{8}{7})$
(8) J(u + n)	$(11) J(\overline{7})$

- 2. Considering the example of the rectangular pen, instead of writing the cost C in terms of the length of the brick side L we could have written it in terms of the width W
 - (a) Write an algebraic rule expressing C in terms of W
 - (b) What is the domain of the rule in a?
 - (c) Write an equation that relates L and W
 - (d) Solve that equation for L
 - (e) Go back to $C = 7L + \frac{48}{L}$ and replace L by $\frac{12}{W}$ and simplify the expression
- 3. A farmer was a cow named Minerva. For her he has purchased 1200 feet of fencing to enclose three sides of a rectangular grazing area. The fourth side is bounded by a long barn and needs no fence.
 - (a) Suppose the side along the barn is 100 feet. Find the enclosed area.
 - (b) Suppose the side along the barn is 400 feet. Find the enclosed area.
 - (c) Suppose the side along the barn is 1000 feet. Find the enclosed area.
 - (d) Suppose the side along the barn is π feet. Find the enclosed area.
 - (e) Write the enclosed area as a function of the length of the side againt the barn
 - (f) Find the maximum area possible

hint: unlike the first example this can be done with no calculus. It is a parabola and the maximum value of a parabola that opens down is the second coordinate of the vertex.