Name: _____

- 1. Write the converse, inverse and contrapostive of the compound statement: If I had a hi-fi, ma has a ham.
 - (a) converse

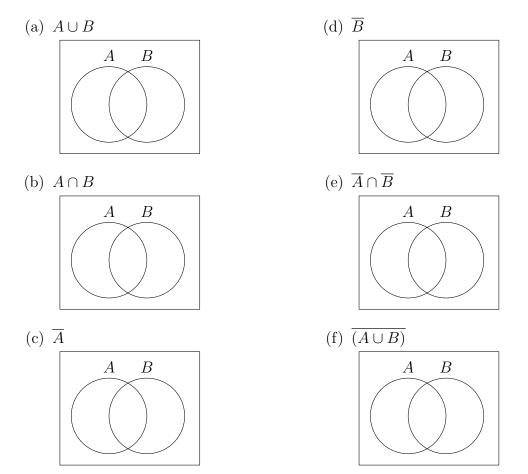
Sample Final

- (b) inverse
- (c) contrapositive
- 2. Write a truth table for $(p \lor q) \to (p \land q)$

p	q	$p \lor q$	$p \wedge q$	$ (p \land q) \to (p \lor q) $
T	T			
T	F			
F	T			
F	F			

- 3. Prove $\neg(p \land q) \equiv \neg p \lor \neg q$ using a truth table.
- 4. Negate the statement "Everything is beautiful."
- 5. Negate the statement $\forall x P(x)$

6. Show $\overline{(A \cap B)} = \overline{A} \cup \overline{B}$ using Venn diagrams.



Write the following statements in English, and negate each statement (in English). Determine whether the original statement is true, and give a justification. The domain of each statement is $\mathbb{N} = \{1, 2, 3, ...\}$

 $7. \ \forall x \exists y (2x - y = 0)$

(a) English

- (b) Negation
- (c) True or False
- (d) Justification
- 8. $\forall y \exists x (2x y = 0)$

(a) English

- (b) Negation
- (c) True or False
- (d) Justification
- 9. Definition: A function $f: A \to B$ is injective (one to one) if and only if
- 10. Negate the definition: $f: A \to B$ is not injective if and only if
- 11. Definition: A function $f: A \to B$ is surjective (onto) if and only if
- 12. Negate the definition: $f:A \rightarrow B$ is not surjective if and only if

- 13. Let $f : \mathbb{R} \setminus \{2\} \to \mathbb{R} \setminus \{0\}$ via $x \mapsto \frac{1}{x-2}$ i.e. $f(x) = \frac{1}{x-2}$
 - (a) Show that f is injective.

(b) Find an explicit formula for $f^{-1}(x)$

14. Prove the (rather obvious) fact that if n is an integer and 3n-2 is even, then n is even(a) by contraposition

(b) by contradiction

15. Find the first 5 terms of the sequence defined by the recurrence relation

$$a_n = a_{n-1} + n, a_1 = 1$$

16. Show that $a_n = 2^n - 1$ is a solution to the recurrence relation

$$a_n = 2a_{n-1} + 1,$$

17. Find
$$\sum_{k=1}^{100} 2k + 5$$

18. Find
$$\sum_{k=0}^{\infty} \left(\frac{1}{3}\right)^k$$

19. Prove
$$\sum_{j=1}^{n} 2j + 5 = n^2 + 6n$$
 by induction

(a) Base step:

- (b) Induction hypothesis:
- (c) Inductive step:

- 20. Prove that $n^2 + n$ is even by induction:
 - (a) Base step:
 - (b) Induction hypothesis:
 - (c) Inductive step:
- 21. Prove $\forall n \in \mathbb{N}, 5 | 11^n 6^n$ that is $11^n 6^n$ is divisible by 5
 - (a) Base step:
 - (b) Induction hypothesis:
 - (c) Inductive step: Hint $11^{k+1}-6^{k+1}=11^{k+1}-11\times 6^k+5\times 6^k$
- 22. Factor 392 and 420
- 23. Find lcm(420, 392)
- 24. It is fairly clear that gcd(101, 23) = 1 since both are prime. Using the Euclidean algorithm find the Bezout coefficients, that is, find s and t so that 101s + 23t = 1

25. What is 101 modulo 23?

26. Find the inverse of 4 modulo 9

27. Solve $4x \equiv 3 \pmod{9}$

28. Solve the system

$$x \equiv (2 \mod 3), x \equiv (1 \mod 5), x \equiv 2 \pmod{7}$$

- 29. Show that if there are 30 students in a class, at least two must have last names that begin with the same letter.
- 30. Show that among any group of 6 integers, there is a pair x, y with $x \equiv y \pmod{5}$
- 31. How many cards must be drawn from a deck to ensure that there are either 4 clubs, 3 hearts, 2 spades or 1 diamond selected?
- 32. Verify Pascal's identity

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

for n = 6, k = 4

- 33. Let A be the set $\{1, 2, 3, 4, 5\}$ and R be the relation $R = \{(x, y) | x \text{ divides } y\}$
 - (a) Write R as a set.
 - (b) Draw a diagram for R
 - (c) IsR reflexive? Be explicit.
 - (d) Is R symmetric?
 - (e) Transitive?
- 34. The sets $\{a, b\}, \{c, d\} \{e\}$ form a partition of $S = \{a, b, c, d, e\}$ Diagram the corresponding equivalence relation.
- 35. Let $A = \{0, 1, 2, 3, 4, 5, 6\}$ and R be the relation $R = \{(x, y) | x \equiv y \mod 3\}$
 - (a) Show explicitly that R is and equivalence relation.
 - (b) What are the equivalence classes of R?