1. Graph the parametric equation

$$x = t^3 - 3t, y = t^2 - 3$$

Before using wolfram lets plot some points, picking integer values of t from -5 to 5

\mathbf{t}	$x = t^3 - 3t$	$y = t^2 - 3$	point
-5	-110	22	(-110, 22)
-4	-52	13	(-52, 13)
-3	-18	6	(-18, 6)
-2	-2	1	(-2, 1)
-1	2	-2	(2, -2)
0	0	-3	(0, -3)
1	-2	-2	(-2, -2)
2	2	1	(2, 1)
3	18	6	(18, 6)
4	52	13	(52, 13)
5	110	22	(110, 22)

Some things to notice:

 $x=t^3-3t$ is an odd cubic function of t which means in the graph x will go from $-\infty$ to ∞

 $y=t^2-3$ is an even quadratic function with minimum value -3 so y will go from -3 to ∞

The graph will not be a graph of a function because for example (2, -2) and (2, 1) are on the graph.

Desmos

We can see from the graph that it contains the point (0,0) but we did not plot that point. To find the t that gives (0,0) which we will need to compute the slope of the tangent line at that point, we can solve

$$t^2 - 3 = 0 \iff t = \pm\sqrt{3}$$

We can check that if $y = \sqrt{3}$ then $x = \sqrt{3}^3 - 3\sqrt{3} = 0$

2. Graph

$$x = t^2 - 9, y = t + 3$$

Unlike the previous one we can "eliminate the parameter" by solving

$$y = t + 3 \iff y - 3 = t$$

and so

$$x = t^2 - 9 = (y - 3)^2 - 9$$

a parabola that opens to the right with vertex (-9,3)

Note that when we eliminate the parameter we get a perfectly good equation, but without the parameter the graph does not have a direction.

Desmos

3. The mother of all parametric equations is given by

$$x = \cos(t), y = \sin(t)$$

i.e. the unit circle. If we take $0 \le t < 2\pi$ the circle is traced out counter clockwise starting at (0,0). We could restrict t for say $\frac{\pi}{2} \le t \le \frac{3\pi}{2}$ to get this:

Desmos