CHAPTER

THE LOGARITHM AND
EXPONENTIAL FUNCTIONS

In Chapter 15 the integral provided a rigorous formulation for a preliminary
definition of the functions sin and cos. In this chapter the integral plays a more
essential role. For certain functions even a preliminary definition presents
difficulties. For example, consider the function

flx) = 10=.

This function is assumed to be defined for all x and to have an inverse function,
defined for positive x, which is the “logarithm to the base 10,”

f"‘(x) = lOgm X.
In algebra, 10° is usually defined only for rational x, while the definition for
jrrational x is quietly ignored. A brief review of the definition for rational x
will not only explain this omission, but also recall an important principle
behind the definition of 10°.

The symbol 10" is first defined for natural numbers n. This notation turns
out to be extremely convenient, especially for multiplying very large numbers,
because

10" - 10™ = 10™*™,
The extension of the definition of 10* to rational x is motivated by the desire to
preserve this equation; this requirement actually forces upon us the customary
definition. Since we want the equation

10° - 10® = 10" = 10"
to be true, we must define 10° = 1; since we want the equation
107" - 10" = 10° = 1

to be true, we must define 107" = 1 /10™; since we want the equation

10Ur - . . . - 10Um = 1oy Hn = 10! = 10
—m—T N ™ ————
n times n times

to be true, we must define 10V" = v 10; and since we want the equation

10Um - . .. - 104 = fQUnte o FUn = 10
— g
m times m times

to be true, we must define 10™/* = (\"/1_0)"‘.

Unfortunately, at this point the program comes to a dead halt. We have
been guided by the principle that 10” should be defined so as to ensure that
10=tv = 10%10¥; but this principle does not suggest any simple algebraic way

of defining 107 for irrational x. For this reason we will try some more sophisti-
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284  Derivatives and Integrals

cated ways of finding a function f such that

(%) f&x+y) = f(x) - f(3) for all x and y.

Of course, we are interested in a function which is not always zero, so we might
add the condition f(1) 5 0. If we add the more specific condition f(1) = 10,
then () will imply that f(x) = 10 for rational x, and 107 could be defined as
f(x) for other x; in general f(x) will equal [f(1)F* for rational x.

One way to find such a function is suggested if we try to solve an apparently
more difficult problem: find a differentiable function f such that

flx+3) = f(x)- f(y) for all x and y,
f(1) = 10.

Assuming that such a function exists, we can try to find f'—knowing the deriv-
ative of f might provide a clue to the definition of f itself. Now

fx + ) = f@x)

f(x) = lim p
i 1) - f(h) — f@x)
= jim-———
B0 h
= f() lim {1,
h—0 h
The answer thus depends on
£(0) = m {81,
h—0 h

for the moment assume this limit exists, and denote it by @. Then
f(x) =a-f(x) for all x.

Even if a could be computed, this approach seems self-defeating. The deriva-
tive of f has been expressed in terms of f again.
If we examine the inverse function f~! = log,, the whole situation appears
in a new light: '
1

FH)
_ 1 _ 1.
T af(fi(x)  ex

The derivative of /! is about as simple as one could ask! And, what is even

b .
more interesting, of all the integrals f x™ dx examined previously, the integral

a

lOg 1 o/ (x) =

b
/ %' dx is the only one which we cannot evaluate. Since logio 1 = 0 we
a

should have

1 (=1
- —dt = loglox ol lOglo 1= logm X.
a1t
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This suggests that we define logi, x as (1/a) / t~* dt. The difficulty is that
1

a is unknown. One way of evading this difficulty is to define

logx=/ 1dt,
1 ¢

and hope that this integral will be the logarithm to some base, which might be
determined later. In any case, the function defined in this way is surely more
reasonable, from a mathematical point of view, than logi,. The usefulness
of log:, depends on the important role of the number 10 in arabic notation
(and thus ultimately on the fact that we have ten fingers), while the function
log provides a notation for an extremely simple integral which cannot be
evaluated in terms of any functions already known to us.

If x > 0, then
log x = /zldt.
1 ¢

The graph of log is shown in Figure 1. Notice that if x > 1, then log x > 0,
and if 0 < x < 1, then log x < 0, since, by our conventions,

z 1
1dt=—f1dt<0.
1 ¢ z ¢

For x < 0, a number log x cannot be defined in this way, because f(£) = 1/¢is
not bounded on [x, 1].

fu) = ,‘

area = log x : log

(a) (b)
FIGURE 1

The justification for the notation ““log” comes from the following theorem.

If x, » > 0, then
log(xy) = log x + log y.

Notice first that log’(x) = 1/x, by the Fundamental Theorem of Calculus.
Now choose a number y > 0 and let

f(x) = log(xy).
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COROLLARY 1

PROOF

COROLLARY 2

PROOF

Then

R |-

f() = log/() -y = xl—y-y -

Thus f* = log’. This means that there is a number ¢ such that

f(x) =logx+c¢ forallx >0,
that is,
log(xy) = log x + ¢ for all x > 0.

The number ¢ can be evaluated by noting that when x = 1 we obtain

log(1-y) =logl4¢
= ¢
Thus
log(xy) = log x + log y for all x.

Since this is true for all y > 0, the theorem is proved. |

If n is a natural number and x > 0, then

log(x™) = nlog x.
Left to you (use induction). |
If x, y > 0, then
log (f) = log x — log y.
This follows from the equations

log x = log (f 'y) = log <f) + log y. |
J Y/

Theorem 1 provides some important information about the graph of log.
The function log is clearly increasing, but since log’(x) = 1/x, the derivative
becomes very small as x becomes large, and log consequently grows more and
more slowly. It is not immediately clear whether log is bounded or unbounded
on R. Observe, however, that for a natural number 7,

log(2") = nlog 2 (and log 2 > 0);

it follows that log is, in fact, not bounded above. Similarly,
1
log (2—7;) = log 1 — log 2" = —n log 2;

therefore log is not bounded below on (0, 1). Since log is continuous, it actually
takes on all values. Therefore R is the domain of the function log™. This
important function has a special name, whose appropriateness will soon be-
come clear.
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b

The “exponential function,” exp, is defined as log™™.

The graph of exp is shown in Figure 2. Since log x is defined only for x > 0,
we always have exp(x) > 0. The derivative of the function exp is easy to
determine.

For all numbers x, ‘
exp’(x) = exp(x).

1
log’(log™(x))

i

(log™") (x) =
1
1
log™(x)
= log7!(x) = exp(x). |l

exp’(x)

A second important property of exp is an easy consequence of Theorem 1.

If x and y are any two numbers, then
exp(x +y) = exp(x) - exp(y).
Let ¥’ = exp(x) and y’ = exp(y), so that

x = log «/,
y = log y".
Then
x+y =log ¥ + log y’ = log(x’y").

This means that
exp(x + y) = x'y’ = exp(x) - exp(y). |
This theorem, and the discussion at the beginning of this chapter, suggest

that exp(1) is particularly important. There is, in fact, a special symbol for
this number.

e = exp(l).

This definition is equivalent to the equation

1=loge=/e1dt.
1 ¢
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o+
W
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FIGURE 3

DEFINITION

DEFINITION

As illustrated in Figure 3,

2
/ tldt <1, since 1 (2 — 1) is an upper sum faor
1
f(®) =1/ton 1, 2],

and
4
/ %dt> 1, sinced-2—1)+%-@d —2) =1isa lower
1
sum for f(t) = 1/t on [1, 4].

2 e 4
/1dt</1dt</ 1a?t,
1 ¢ 1t 1 ¢

2<e<A4.

Thus

which shows that

In Chapter 19 we will find much better approximations for ¢, and also prove
that ¢ is irrational (the proof is much easier than the proof that 7 is irrational !).
As we remarked at the beginning of the chapter, the equation

exp(x + y) = exp(x) * exp(y)
implies that
exp(x) = [exp(1) ]
= ¢*, for all rational x.

Since exp is defined for all x and exp(x) = ¢* for rational x, it is consistent with
our earlier use of the exponential notation to define ¢ as exp(x) for all x.

For any number x,
e* = exp(x).

The terminology ‘“‘exponential function” should now be clear. We have
succeeded in defining ¢* for an arbitrary (even irrational) exponent x. We have
not yet defined 4%, if 2 ¢, but there is a reasonable principle to guide us in
the attempt. If x is rational, then

a* = (eloga)x = ezlogd.

But the last expression is defined for all x, so we can use it to define a°.

If a > 0, then, for any real number x,

a* = coloee,

(If a = e this definition clearly agrees with the previous one.)

The requirement a > 0 is necessary, in order that log a be defined. This is



flx) =10

FIGURE 4
THEOREM 4
PROOF
g Jla) = log x
4
*1
|
fx) = logix___
1{&z /w"/ﬂw-»w
5 -
\”\“ //
«L‘;;;Nh‘k/(x) =loggx (a< 1)

FIGURE 5
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not unduly restrictive since, for example, we would not even expect
()2 LV —1
to be defined. (Of course, for certain rational #, the symbol will make sense,
according to the old definition; for example,
(=8 = V=1 = —1)
Our definition of a* was designed to ensure that
(¢®)¥ = ¢ for all x and y.

As we would hope, this equation turns out to be true when ¢ is replaced by any
number z > 0. The proof is a moderately involved unraveling of terminology
At the same time we will prove the other important properties of a”

If @ > 0, then

(1) (ab)° = ab¢ for all b, c.

(Notice that «® will automatically be positive, so (a?)¢ will be defined);
@ =

(Notice that (2) implies that this definition of a® agrees with the old one for
rational x.)

a and ¢ = a®-a¥ for all x, y.

(1) (ab)c = (floga® = pelog (ebtors) — ,c(dlogad) — gobloza = abc.

(Each of the steps in this string of equalities depends upon our last definition,
or the fact that exp = log™".)

2)

al —_ elloga = ploga — a,
= e@tloge — gflogatyloga — Zloga . logd = 4% - au_l

Figure 4 shows the graphs of f(x) = o for several different a. The behavior
1, then

of the function depends on whether a < 1,2 =1, 0ora > 1. Ifa=
f(x) = 1= = 1. Suppose a > 1. In this case log a > 0. Thus,

if x <y,

then xloga < yloga,
SO exloga < eﬂlogd,
ie., a < d.

Thus the function f(x) = 4* is increasing. On the other hand, if0 <a<1,s0
that log a < 0, the same sort of reasoning shows that the function f(x) = 4% is
decreasing. In either case, ifa > 0 and a # 1, then f(x) = a*is one-one. Since
exp takes on every positive value it is also easy to see that ¢® takes on every
positive value. Thus the inverse function is defined for all positive numbers,
and takes on all values. If f(x) = 47, then f~1is the function usually denoted
by log, (Figure 5).



290  Derivatives and Integrals

Just as a” can be expressed in terms of exp, so log, can be expressed in terms
of log. Indeed,

if y = log, x,
then x = q¥ = ¢¥loge,
o log x = y log a,
or _ logx
log a
In other words,
1
log, x = LEA
log a

The derivatives of f(x) = ¢* and g(x) = log, x are both easy to find:

f(x) = &18% 50 f'(x) = log a * ¢#ls® = log a * &°,

log x
6 =20 s0g(x) =
og a

x log a
A more complicated function like
f(x) = g™
is also easy to differentiate, if you remember that, by definition,
f(x) = eh(z)lou(z);
it follows from the Chain Rule that

7169 = ene [ 1(s)log ) + hte) £
g)(x)

= ()" | g7,

= g(x)h( ) [/2 (x) log g(x) + 2(x) L ]

There is no point in remembering this formula—simply apply the principle
behind it in any specific case that arises; it does help, however, to remember
that the first factor in the derivative will be g(x)*@.

‘There is one special case of the above formula which 75 worth remembering.
The function f(x) = x* was previously defined only for rational a. We can now
define and find the derivative of the function f(x) = x° for any number «; the
result is just what we would expect:

f) = a = oo,

SO

Flx) =2 ome = 2 pm = g,
X X

Algebraic manipulations with the exponential functions will become second
nature after a little practice—just remember that all the rules which ought to
work actually do. The basic properties of exp are still those stated in Theorems
2 and 3:
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exp/(x) = exp(x),
exp(x + y) = exp(x) * exp(y).
In fact, each of these properties comes close to characterizing the function exp.
Naturally, exp is not the only function f satisfying f' = f,forif f = c¢*, then
f/(x) = ¢c¢® = f(x); these functions are the only ones with this property,
however.

If f is differentiable and
f'(x) = f(x) for all x,
then there is a number ¢ such that

f(x) = ¢¢# for all x.
Let
f),

glx) =

(This is permissible, since ¢* > 0 for all x.) Then

iy _ Ef () — f)e _
g'x) = e 0.

Therefore there is a number ¢ such that

1) _

¢ for all x. ]
(’D

g(x) =

The second basic property of exp requires a more involved discussion. The
function exp is clearly not the only function f which satisfies

fexe ) = f(x) - f(3).

In fact, f(x) = 0 or any function of the form f(x) = a® also satisfies this equa-
tion. But the true story is much more complex than this—there are infinitely
many other functions which satisfy this property, but it is impossible, without
appealing to more advanced mathematics, to prove that there is even one
function other than those already mentioned! It is for this reason that the
definition of 107 is so difficult: there are infinitely many functions f which
satisfy

flx +9) = f(x) - f(3),
Q1) = 10,

but which are not the function f(x) = 107! One thing is true however—any
continuous function f satisfying

flx+3) = f(x) - fO)
must be of the form f(x) = a® or f(x) = 0. (Problem 27 indicates the way to

[
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THEOREM 6

PROOF

f) = }

prove this, and also has a few words to say about discontinuous functions with
this property.)

In addition to the two basic properties stated in Theorems 2 and 3, the
function exp has one further property which is very important—exp “grows
faster than any polynomial.” In other words,

For any natural number »,
. e
lim — = o,
n
The proof consists of several steps.
Step 1. & > x for all x, and consequently lim ¢* = « (this may be con-
Famd ]

sidered to be the case n = 0).
To prove this statement (which is clear for x < 0) it suffices to show that

x > log x for all x > 0.
If x < 1 this is clearly true, since log x < 0. If x > 1, then (Figure 6) x — 1 is
an upper sum for f(t) = 1/ton [1,x],sologx < x — 1 < x.

Step 2. lim & = o

oo X
To prove this, note that
S W L W
¥oox, 2\ x
2 2

By Step 1, the expression in parentheses is greater than 1, and lim ¢*/2 = oo

z—r©

this shows that lim ¢*/x = .

T ®

Step 3. lim i” = o,

0 X

Note that

The expression in parentheses becomes arbitrarily large, by Step 2, so the nth
power certainly becomes arbitrarily large. |

It is now possible to examine carefully the following very interesting func-
tion: f(x) = ¢~ ¥** x = 0, We have

Fie) = e 2.
X
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Therefore,
f(x) <0 forx <O,
f/(x) >0 forx>0,

so f is decreasing for negative x and increasing for positive x. Moreover, if | x| is
large, then x? is large, so —1/x2is close to 0, so ¢71/** is close to 1 (Figure 7).

FIGURE 7

The behavior of f near 0 is more interesting. If x is small, then 1/x2is large,
so ¢!/® is large, so ¢1** = 1/(¢"*") is small. This argument, suitably stated
with €’s and &’s, shows that

lim ¢~ = Q.

z—0
Therefore, if we define
e x50

f(x)={0, e

then the function f is continuous (Figure 8). In fact, f is actually differentiable

FIGURE 8

at 0: Indeed

—1/h2
f(0) = lim ¢
-0 A
1
= lim h

w0 e(1/R?

lim

2> 0 e(”)
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We already know that

lim — = oo;
z—w X
it is all the more true that
e(zﬂ)
lim — = oo,
o X
and this means that
. x
e =0

Thus
—1/z2 , E £ 0
fy={¢" " *

0, x =
We can now compute that

s _ v fB) — f1(0)
f/(0) = lim p

h—0
w2

. R
= lim

A—0 h

» 1

tim 2 i i 2
= = = lim —:

-0 At r0 elW ENPICON

an argument similar to the one above shows that f/(0) = 0. Thus

- 4
eyt —;6— + et = x#0
x

f'(x) = x
0, x = 0.

This argument can be continued. In fact, using induction it can be shown
(Problem 29) that f® (0) = O for every k. The function f is extremely flat at 0,

—1/at o
e~ sin 1/x, x =

i = {6, *

FIGURE 9




The Logarithm and Exponential Functions 295

and approaches 0 so quickly that it can mask many irregularities of other
functions. For example (Figure 9), suppose that

1
eV egins x %0

fx) = x
0, x =0,
It can be shown (Problem 30) that for this function it is also true that
f®(0) = 0 for all k. This example shows, perhaps more strikingly than any
other, just how bad a function can be, and still be infinitely differentiable. In
Part IV we will investigate even more restrictive conditions on a function,
which will finally rule out behavior of this sort.

PROBLEMS

1. Differentiate each of the following functions (remember that a®° always
denctes a®?),

() fla) = e
(i) f(x) = log(1 + log(1 + log(1 + e'*<™))).
(lll) f(x) = (sin x)sin (sinz).
iv) i) = Lo,
(v)  f(x) = sin x*ina™",
(vi) f(x) = log(e sin x.
x log (sin e%)
(vil) f(x) = [arcsm (si )]

nx
(viii) f(x) = (log(3 + ¢*))e** + (arcsin x)'oe2,
(ix) f(x) = (log x)'e=.

(x)  flx) =+

2. Graph each of the following functions.
(@) flx) = .

(b) f(x) = e~
(c) flx) = & + . ] (Compare the graphs with the graphs of exp and

d) f(x) = ¢ — e = | 1/exp.)

& —e* -1 2
@I ===~ et

3. Find the following limits by ’Hépital’s Rule.
& ~1 —x=x2

(i) lim n
z—0 X

(i) Hme’ -1 —x—x%2 - x3/6'
20 x3

Fo— 1 — x — 2
(i) Tim &1 x o /2
z—0 X
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Py a4yt =1

—

(cos x, sin x)

(cosh x, sinh x)

(b)

FIGURE 10

(iv) lim log(1 + ) 2— *+ x2/2.
z—0 X
log(1 4+ x) — x + x2/2
x8 '
(vi) lim 080 T %) — x4+ 2%/2 — /3

z—0 X

(v) lim
z—0

The functions

sinh x = 2 — ¢,
2
cosh x = +e,
2
tanh x = —¢ =1- 2 y
&+ e e 4+ 1

are called the hyperbolic sine, hyperbolic cosine, and hyperbolic
tangent, respectively (but usually read sinch, cosh, and tanch). There
are many analogies between these functions and their ordinary trigo-
nometric counterparts. One analogy is illustrated in Figure 10; a proof
that the region shown in Figure 10(b) really has area x/2 is best deferred
until the next chapter, when we will develop methods of computing
integrals. Other analogies are discussed in the following three problems,
but the deepest analogies must wait until Chapter 26. If you have not
already done Problem 2, graph the functions sinh, cosh, and tanh.

Prove that
(a) cosh? — sinh? =1
(b) tanh? + 1/cosh? = 1.
(c) sinh(x 4+ y) = sinh x cosh y + cosh x sinh y.
(d) cosh(x -+ y) = cosh x cosh y + sinh x sinh jy.
(e) sinh’ = cosh.
(f) cosh’ = sinh.
1 .
cosh?

(g) tanh’

The functions sinh and tanh are one-one; their inverses, denoted by arg
sinh and arg tanh (the “argument” of the hyperbolic sine and tangent),
are defined on R and (—1, 1), respectively. If cosh is restricted to [0, =)
it has an inverse, denoted by arg cosh, which is defined on (1, ).
Prove, using the information in Problem 5, that

(a) sinh(cosh™! x) = Vit — 1.
(b) cosh(sinh™x) = V1 4 x%

(©) (sinh™)’(x) = #
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(d) (cosh™))’(x) = for x > 1.

1
\/xz—l

for |x| < 1.

(e) (tanh™)'(x) =
(a) Find an explicit formula for sinh™, cosh™, and tanh™! (by solving
the equation y = sinh™! x for x in terms of y, etc.).

(b) Find

dx,

/b 1

o V1422

fb ! dx 1 b>1 b <1
—————dx fora, b >1ora b<l1,
Vit — 1

b1
f dx for la, 8] < 1.
a 1 - x2

Compare your answer for the third integral with that obtained by
writing
1 1 1 1
1—x2_§[1—x+1+x]

(a) lim & for 0 < a < 1. (Remember the definition!)

Famd ]

Find

®) i:r{: (log x)"

© 1 (10g 0"

)

(d) lim x(log x)™. Hint: x(log x)" =
z—0*

R =

(e) lim »°.
z—0t

Graph f(x) = x* for x > 0. (Use Problem 8(e).)

(a) Find the minimum value of f(x) = ¢*/x" for x > 0, and conclude
that f(x) > ¢"/n" for x > n.

(b) Using the expression f/(x) = ¢*(x — n)/x"*}, prove that f'(x) >
e"™1/(n 4+ 1)**1 for x > n + 1, and thus obtain another proof that

lim f(x) =

T— ©

Graph f(x) = & /x™
(a) Find lim log(1 + y)/y. (You can use I'Hépital’s Rule, but that
y—0

would be silly.)
(b) Find lim x log(1 + 1/x).
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13.
14.

15.
*16.

*17.

*18.

*19.

*20.
21.

(c) Prove that ¢ = lim (1 + 1/x)=.
(d) Prove that ¢* = lim (1 + a/x)=. (It is possible to derive this from

part (c) with just a little algebraic fiddling.)
*(e) Prove that log b = lim x(41 — 1).

Graph f(x) = (1 + 1/x)* for x> 0. (Use Problem 12(c).)

If a bank gives a percent interest per annum, then an initial investment 7
yields /(1 + a/100) after 1 year. If the bank compounds the interest
(counts the accrued interest as part of the capital for computing interest
the next year), then the initial investment grows to I(1 4 a/100)" after
n years. Now suppose that interest is given twice a year. The final amount
after n years is, alas, not I(1 + 2/100)%", but merely I(1 + 2/200)2*—
although interest is awarded twice as often, the interest must be halved
in each calculation, since the interest is a/2 per half year. This amount
is larger than I(1 + 4/100)™, but not that much larger. Suppose that the
bank now compounds the interest continuously, i.e., the bank considers
what the investment would yield when compounding # times a year, and
then takes the least upper bound of all these numbers. How much will an
initial investment of 1 dollar yield after 1 year?

Let f(x) = log |x| for x 5 0. Prove that f’(x) = 1/x for x = 0.

Prove that if f’ = ¢f for some number ¢, then f(x) = ke* for some
number £.

A radioactive substance diminishes at a rate proportional to the amount
present (since all atoms have equal probability of disintegrating, the
total disintegration is proportional to the number of atoms remaining).
If A(t) is the amount at time ¢, this means that A’(f) = ¢A(¢f) for some ¢
(which represents the probability that an atom will disintegrate).

(a) Find A(¢) in terms of the amount 4, = 4(0) present at time 0.

(b) Show that there is a number 7 (the “half-life” of the radioactive ele-
ment) with the property that A(z + 7) = A()/2.

Newton’s law of cooling states that an object cools at a rate proportional

to the difference of its temperature and the temperature of the surround-

ing medium. Find the temperature 7'(¢) of the object at time ¢, in terms

of its temperature 7 at time 0, assuming that the temperature of the

surrounding medium is kept at a constant, A. Hint: To solve the differen-

tial equation expressing Newton’s law, remember that 77 = (T' — M)’.

Prove that if f(x) = ﬁ) * f(t) dt, then f = 0.

HMmﬁwmﬁmMmﬂﬁﬂw+ﬂMﬁ

(a) Prove that

2 3 n
T4+ 4 X < forx>o.
217" 31 n!

Hint: Use induction on n, and compare derivatives.
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22.

*23.

*24.
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(b) Give a new proof that lim ¢?/x™ = .

Give yet another proof of this fact, using the appropriate form of ’'Hopi-
tal’s Rule. (See Problem 11-38.)

A point P is moving along a line segment 4B of length 107 while another
point Q moves along an infinite ray (Figure 11). The velocity of P is
always equal to the distance from P to B (in other words, if P(t) is the
position of P at time ¢, then P'(t) = 107 — P(¢)), while Q moves with
constant velocity Q’() = 107. The distance traveled by Q after time ¢ is
defined to be the Napierian logarithm of the distance from P to B at time &.
Thus

107t = Nap log[107 — P(¥)].

This was the definition of logarithms given by Napier (1550-1617) in his
publication of 1614, Mirifici logarithmonum canonis description (A Descrip-
tion of the Wonderful Law of Logarithms); work which was done before
the use of exponents was invented! The number 107 was chosen because
Napier’s tables (intended for astronomical and navigational calcula-
tions), listed the logarithms of sines of angles, for which the best possible
available tables extended to seven decimal places, and Napier wanted to
avoid fractions. Prove that

7
Nap log x = 107 log 107,
x

Hint: Use the same trick as in Problem 18 to solve the equation for P.

(a) Sketch the graph of f(x) = (log x)/x (paying particular attention
to the behavior near 0 and «).

(b) Which is larger, ¢" or ¢ ?

(c) Prove that if 0 < x < 1, or x = ¢, then the only number y satisfying
xv =7 isy = x; but if x > 1, x = ¢, then there is precisely one
number y = x satisfying x¥ = y*; moreover, if x <e¢, theny > ¢,
and if x > ¢, then y < e. (Interpret these statements in terms of the
graph in part (a)!)

(d) Prove that if x and y are natural numbers and x¥ = y, then x = y
orx =2 y=4o0orx =4y =2,

(e) Show that the set of all pairs (x, y) with ¥ = y* consists of a curve
and a straight line which intersect; find the intersection and draw a
rough sketch.

*5(f) For 1 < x < ¢ let g(x) be the unique number > ¢ with x#® =

g(x)=. Prove that g is differentiable. (It is a good idea to consider
separate functions,

log x

filx) = )y 0<x<e

X

1
fo(x) = OBX L <x
x
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*25.

26.

*27.

*28.

*29.

*30.

31.

and write g in terms of f; and f,. If you do this part properly you
should be able to show that

vy - g®)]* 1 —logx
g = 1 — log g(x) x? )

This problem uses the material from the Appendix to Chapter 11.

(a) Prove that exp is convex and log is concave.
n

(b) Prove that if 2 pi=1andall p; > 0, then

=1
2Py < piz o+ pasa.

(Use Problem 8 from the Appendix to Chapter 11.)
(c) Deduce another proof that G, < 4, (Problem 2-20).

Suppose f satisfies f = f and f(x + y) = f(x)f(y) for all x and y. Prove
that f = exp or f = 0.

Prove that if f is continuous and f(x + y) = f(x)f(y) for all x and y, then
either f = 0 or f(x) = [f(1)]* for all x. Hint: Show that f(x) = [f(1)]*
for rational x, and then use Problem 8-6. This problem is closely related
to Problem 8-7, and the information mentioned at the end of Problem
8-7 can be used to show that there are discontinuous functions f satisfy-
ing f(x + y) = f(0f(y).

Prove that if f is a continuous function defined on the positive reals, and
flxy) = f(x) + f(y) for all positive x and y, then f =0 or f(x) =
f(e) log x for all x > 0. Hint: Consider g(x) = f(e*).

Prove that if f(x) = ¢7V/#* for x > 0, and f(0) = 0, then f*(0) = 0 for
all .

Prove that if f(x) = ¢7/#* sin 1/x for x 5 0, and f(0) = 0, then f*(0) =
0 for all £.

(a) Prove that if « is a root of the equation

(%) ant™ + apx" 1+ * - - +ax + a0 =0,
then the function y(x) = ¢ satisfies the differential equation
(**) dn}’(") + an_ly(n—l) 4+ - 4+ dl}" + agy = 0.

*(b) Prove that if @ is a double root of (*), then y(x) = xe== also satisfies
(**). Hint: Remember that if « is a double root of a polynomial
equation f(x) = 0, then f'(a) = 0.

*(c) Prove that if a is a root of (*) of order 7, then y(x) = x*¢=* is a solu-
tionfor0 <4 <r—1.

If (¥) has n real numbers as roots (counting multiplicities), part (c)
gives n solutions y1, . . . , y, of (%x).

(d) Prove that in this case the function ¢y, + * * * + ¢pys also
satisfies (#%*).
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It is a theorem that in this case these are the only solutions of (*x*).
Problem 16 and the next two problems prove special cases of this
theorem, and the general case is considered in Problem 19-17.
In Chapter 26 we will see what to do when (*) does not have » real
numbers as roots. :

Suppose that f satisfies f/ — f = 0 and f(0) = f'(0) = 0. Prove that
f = 0 as follows.

(a) Show that f2 — (f")? = 0.

(b) Suppose that f(x) = 0 for all x in some interval (g, 5). Show that
either f(x) = ce® or else f(x) = ce™ for all x in (g, ), for some
constant c.

**(c) If f(xp) = O for xo > 0, say, then there would be a number a such
that 0 < a < x, and f(a) = 0, while f(x) # 0 for a < x < x,.
Why? Use this fact and part (b) to deduce a contradiction.

(a) Show that if f satisfies f'/ — f = 0, then f(x) = ae* + be~* for some
a and b. (First figure out what & and & should be in terms of f(0)
and f(0), and then use Problem 32.)

(b) Show also that f = a sinh + & cosh for some (other) a and é.

Find all functions f satisfying

(a) /@ = f0,

(b) f™ = fn=2),

This problem, a companion to Problem 15-28, outlines a treatment of
the exponential function starting from the assumption that the differen-
tial equation f* = f has a nonzero solution.

(a) Suppose there is a function f # 0 with f* = f. Prove that f(x) = 0
for each x by considering the function g(x)} = f(xo + x)f(x¢ — %),
where f(x,) # 0.

(b) Show that there is a function f satisfying /' = f and f(0) = 1.

(c) For this f show that f(x + y) = f(x) * f(y) by considering the func-
tion g(x) = /(x + ) /(x).

(d) Prove that f is one-one and that (f71)'(x) = 1/x.

A function f is said to grow faster than g if lim f(x)/g(x) = . For

example, exp grows faster than any polynomial function. Suppose that
g1, 82, &1, . . - are continuous functions. Show that there is a continuous
function f which grows faster than each g;.

Prove that logi 2 is irrational.



