\qquad

1. Definition (page 285 Spivak)

$$
\log (x)=
$$

For example:
(a) $\log (2)=$
(b) $\log (\pi)=$
(c) $\log (1)=$
2. Definition (page 287) The exponential function

$$
\exp (x)=
$$

3. Definition (page 287)

$$
e=
$$

4. Definition (page 288)

$$
e^{x}=
$$

5. Explain in clear English (see above) why $\log (1)=0$
6. Explain in clear English why that makes $\exp (0)=e^{0}=1$
7. Definition: for any $b>0$ and any real number x

$$
b^{x}=
$$

For example:
(a) $2^{\pi}=$
(d) $(1-2 x)^{\frac{1}{x}}=$
(b) $2^{x}=$
(e) $(\sin (x))^{x}=$
(c) $x^{\frac{1}{x}}=$
(f) $x^{\sin (x)}=$
8. Find the derivatives of the above.
9. By definition $2^{x}=$ and $2^{y}=$
10. Use the above to write $2^{x} \times 2^{y}$
11. By definition $2^{x+y}=$
12. Use the property of the exponential function $e^{\alpha} \times e^{\beta}=e^{\alpha+\beta}$ to prove they are equal, that is, to prove $2^{x} \times 2^{y}=2^{x+y}$
13. By definition $2^{-1}=$
14. Use the definition to prove $2^{-1}=\frac{1}{2}$ hint: you will need the property of the logs that says $-\log (x)=\log \left(\frac{1}{x}\right)$ Find the following limits
15. $\lim _{x \rightarrow 0}(1-2 x)^{\frac{1}{x}}$
16. $\lim _{x \rightarrow \infty} x^{\frac{1}{x}}$
17. $\lim _{x \rightarrow 1^{+}} x^{\frac{1}{1-x}}$
18. $\lim _{x \rightarrow \infty} x^{\frac{\log (2)}{1-\log (x)}}$

