172 Homework 8

Name:

1. Definition (page 285 Spivak)

$$\log(x) =$$

For example:

- (a) $\log(2) =$
- (b) $\log(\pi) =$
- (c) $\log(1) =$
- 2. Definition (page 287) The exponential function (

$$\exp(x) =$$

e =

- 3. Definition (page 287)
- 4. Definition (page 288)

 $e^x =$

- 5. Explain in clear English (see above) why $\log(1) = 0$
- 6. Explain in clear English why that makes $\exp(0) = e^0 = 1$
- 7. Definition: for any b > 0 and any real number x

$$b^x =$$

For example:

(a)
$$2^{\pi} =$$
 (d) $(1 - 2x)^{\frac{1}{x}} =$

(b)
$$2^x =$$
 (e) $(\sin(x))^x =$

- (c) $x^{\frac{1}{x}} =$ (f) $x^{\sin(x)} =$
- 8. Find the derivatives of the above.

- 9. By definition $2^x =$ and $2^y =$
- 10. Use the above to write $2^x \times 2^y$
- 11. By definition $2^{x+y} =$
- 12. Use the property of the exponential function $e^{\alpha} \times e^{\beta} = e^{\alpha+\beta}$ to prove they are equal, that is, to prove $2^x \times 2^y = 2^{x+y}$

13. By definition $2^{-1} =$

14. Use the definition to prove $2^{-1} = \frac{1}{2}$ hint: you will need the property of the logs that says $-\log(x) = \log(\frac{1}{x})$ Find the following limits

15.
$$\lim_{x \to 0} (1 - 2x)^{\frac{1}{x}}$$

16. $\lim_{x \to \infty} x^{\frac{1}{x}}$

17. $\lim_{x \to 1^+} x^{\frac{1}{1-x}}$

18. $\lim_{x \to \infty} x^{\frac{\log(2)}{1 - \log(x)}}$