\qquad

Integrating rational functions.

1. Simplest example:

$$
\int \frac{x^{3}}{x-2} d x
$$

(a) Divide $\frac{x^{3}}{x-2}$ using synthetic division. You will get a quotient and remainder.
(b) After division, the integral $\int \frac{x^{3}}{x-2} d x$ is easy.
2. Example

$$
\frac{x-2}{x+1}=\frac{x+1-3}{x+1}=1-\frac{3}{x+1}
$$

And therefore

$$
\int \frac{x-2}{x+1} d x=\int\left(1-\frac{3}{x+1}\right) d x=x-3 \ln (|x+1|)+C
$$

(a) $\int \frac{x+3}{x-2} d x$
(b) $\int \frac{x-2}{x-4} d x$
(c) $\int \frac{2 x+7}{x+2} d x$
(hint: the quotient will be 2 , so force it by making part of the numerator $2 x+4$
3. Partial fractions simplest example:

$$
\frac{x-7}{(x-1)(x+2)}=\frac{A}{x-1}+\frac{B}{x+2} \Longleftrightarrow A(x+2)+B(x-1)=x-7 \text { for all } \mathrm{x}
$$

(a) If $x=1, A(1+2)=1-7 \Longleftrightarrow 3 A=-6 \Longleftrightarrow A=-2$
(b) If $x=-2, B(\ldots) \Longleftrightarrow \ldots B=\ldots \Longleftrightarrow B=\ldots$
(c) Now the integral is easy enough.

$$
\int \frac{x-7}{(x-1)(x+2)} d x=
$$

4. Repeat the above to find the partial fraction decomposition of

$$
\frac{7 x-13}{(x-3)(x+1)}
$$

Then find

$$
\int \frac{7 x-13}{(x-3)(x+1)} d x
$$

5. Try doing this partial fractions the cowboy way

$$
\frac{6}{(x-2)(x+1)}=\frac{}{x-2}+\frac{}{x+1}
$$

Making $\int \frac{6}{(x-2)(x+1)} d x=$
6. $\int \frac{x^{2}+2 x-1}{(x-1)\left(x^{2}+1\right)} d x$ hint, here the partial fractions will look like $\frac{A}{x+1}+\frac{B x+C}{x^{2}+1}$
7. An easy partial fractions gives $\frac{1}{x^{2}-a^{2}}=\frac{1}{2 a(x-a)}-\frac{1}{2 a(x+a)}$
(a) Therefore, $\int \frac{d x}{x^{2}-a^{2}}=$
(b) Complete the square and use the above to find

$$
\int \frac{d x}{x^{2}+2 x-4}
$$

8. Another easy partial fractions gives $\frac{1}{x(x+1)}=\frac{1}{x}-\frac{1}{x+1}$
9. $\int \frac{d x}{1+e^{x}}$ in steps:
(a) Make the substitution $u=e^{x}$ solve for x get $x=$
(b) That makes $d x=$ \qquad du
(c) Making the substitution gives $\int \frac{d x}{1+e^{x}}=$

Your answer here should be all in terms of u
(d) The resulting integral in u is already solved in question 8. It is
(e) Replace u in the above answer by e^{x}. Also remember that no one writes $\ln \left(e^{x}\right)$
10.

$$
\int \frac{2 x^{2}-6}{(x-1)(x+1)^{2}} d x
$$

