$\qquad$

| If use see | use the sub | so that | and |
| :---: | :---: | :---: | :---: |
| $\sqrt{a^{2}-x^{2}}$ | $x=a \sin \theta$ | $d x=a \cos \theta d \theta$ | $\sqrt{a^{2}-x^{2}}=a \cos \theta$ |
| $\sqrt{a^{2}+x^{2}}$ | $x=a \tan \theta$ | $d x=a \sec ^{2} \theta d \theta$ | $\sqrt{a^{2}+x^{2}}=a \sec \theta$ |
| $\sqrt{x^{2}-a^{2}}$ | $x=a \sec \theta$ | $d x=a \sec \theta \tan \theta d \theta$ | $\sqrt{x^{2}-a^{2}}=a \tan \theta$ |

In each line, the last entry follows from the second entry by one of the Pythagorean identities.
There are also right triangles you can draw to make the connections between $x, a$, and $\theta$. The three triangles below refer to the three trig subs, respectively.


1. $\int \frac{x^{2} d x}{\sqrt{9-x^{2}}}$
2. $\int \frac{d x}{\sqrt{16+x^{2}}}$
3. $\int \frac{\sqrt{x^{2}-25}}{x^{3}} d x$

It should be clear from question 2 that $\int \frac{d x}{\sqrt{u^{2}+a^{2}}}=\ln \left(\left|u+\sqrt{u^{2}+a^{2}}\right|\right.$ Use the above result and the miracle of completing the square to instantly find
4. $\int \frac{d x}{\sqrt{x^{2}+4 x+10}}$
5. $\int_{\sqrt{2}}^{2} \frac{d x}{x^{3} \sqrt{x^{2}-1}}$

Hint: this looks hard but if you change the limits of integration you don't have to go back to $x$. The substitution is $x=\sec (\theta)$ making $\theta=\sec ^{-1}(x)$ So, for example, the lower limit is $\theta=\sec ^{-1}(\sqrt{2})=\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)=\frac{\pi}{4}$

