\qquad

Integration by parts:

$$
\int u d v=u v-\int v d u
$$

1. Simplest example:

$$
\int x \sin (x) d x
$$

(a) Put $u=$ \qquad and $d v=$ \qquad
(b) This makes $d u=$ \qquad and $v=$ \qquad
(c) Then the integral $\int x \sin (x) d x=$
2.

$$
\int x^{2} \ln (x) d x
$$

(a) Put $u=$ \qquad and $d v=$ \qquad
(b) This makes $d u=$ \qquad and $v=$ \qquad
(c) Then the integral $\int x^{2} \ln (x) d x=$

Questions 3 and 4 use the gimmick where $u=f(x), d u=d x$
3.

$$
\int \ln (x) d x
$$

(a) Put $u=\ln (x), d v=d x$
(b) This makes $d u=$ \qquad and $v=$ \qquad
(c) Then the integral $\int \ln (x) d x=$
4.

$$
\int \tan ^{-1}(x) d x
$$

(a) Put $u=\tan ^{-1}(x), d v=d x$
(b) This makes $d u=$ \qquad and $v=$
(c) Then the integral $\int \tan ^{-1}(x) d x=$
5. $\int x^{3} e^{2 x} d x$

The D-I method will make this snappy. Draw the table here.
6. $\int \cos (x) e^{2 x} d x$

Again the D-I method makes this snappy, know when to stop and integrate!

