172 Homework 3

Name: _____

Integration by parts:

$$\int u dv = uv - \int v du$$

1. Simplest example:

$$\int x \sin(x) dx$$

(a) Put
$$u = _$$
 and $dv = _$
(b) This makes $du = _$ and $v = _$
(c) Then the integral $\int x \sin(x) dx =$

2.

$$\int x^2 \ln(x) dx$$
(a) Put $u = _$ and $dv = _$
(b) This makes $du = _$ and $v = _$
(c) Then the integral $\int x^2 \ln(x) dx =$

Questions 3 and 4 use the gimmick where u = f(x), du = dx

$$\int \ln(x) dx$$

(a) Put
$$u = \ln(x), dv = dx$$

(b) This makes $du = _$ and $v = _$
(c) Then the integral $\int \ln(x) dx =$

$$\int \tan^{-1}(x) dx$$

- (a) Put $u = \tan^{-1}(x), dv = dx$ (b) This makes $du = _$ and $v = _$ (c) Then the integral $\int \tan^{-1}(x) dx =$
- 5. $\int x^3 e^{2x} dx$

The D-I method will make this snappy. Draw the table here.

6. $\int \cos(x) e^{2x} dx$

Again the D-I method makes this snappy, know when to stop and integrate!

4.